

Tetrahedron Letters 43 (2002) 2569-2571

TETRAHEDRON LETTERS

Diastereoselective synthesis of *syn*-3,5-dihydroxyesters via ruthenium-catalyzed asymmetric transfer hydrogenation

Kathelyne Everaere,^a Nicolas Franceschini,^a André Mortreux^a and Jean-François Carpentier^{b,*}

^aLaboratoire de Chimie Organique Appliquée, ENSCL, BP 108-59652 Villeneuve d'Ascq, France ^bLaboratoire Organométalliques et Catalyse, Université de Rennes 1, 35042 Rennes Cedex, France

Accepted 13 February 2002

Abstract—The asymmetric transfer hydrogenation of chiral 5-hydroxy-3-ketoesters in 2-propanol using chlororuthenium(II)arene/ β -amino alcohol in situ catalyst combinations or a pre-synthesized Ru-{ β -amino alcohol} true catalyst, provides *syn*-3,5-dihydroxy-esters in high yields and up to 80% de. © 2002 Elsevier Science Ltd. All rights reserved.

syn-3,5-Dihydroxyesters 2 are advanced building blocks for the preparation of mevinic-type HMG-CoA reductase inhibitors of industrial interest,¹ such as compactin² and mevinolin.³ Their current synthesis implies the syn-diastereoselective reduction of optically pure aldols, i.e. 5-hydroxy-3-ketoesters 1, with the $NaBH_4/BEt_3$ or $NaBH_4/B(OMe)_2Et$ combinations.^{1,4} This method must, however, be performed at low temperature (\leq -60°C) to reach high stereoselectivity and uses expensive borane stoichiometric reagents that generate considerable amounts of waste. It is therefore of great interest to develop efficient *catalytic* approaches toward these key intermediates that proceed under friendly conditions. Previous efforts in this direction by Saburi and our group aimed at the ruthenium-catalyzed asymmetric one-pot hydrogenation (H₂) of 3,5-di-

ketoesters have shown that the *anti*-diol is the favoured stereoisomer in this process.^{5,6} Herein we report that the ruthenium-catalyzed asymmetric transfer hydrogenation of 2-propanol^{7–11} to chiral 5-hydroxy-3-ketoesters provides an effective entry to *syn*-3,5-dihydroxyesters in high yields and promising diastereo-selectivity (Scheme 1, Table 1).

tert-Butyl (S)-5-hydroxy-3-oxohexanoate (1a) was chosen as a model substrate for preliminary investigations. The treatment of 1a with the in situ catalytic combination of $[\text{RuCl}_2(\eta^6-p\text{-cymene})]_2$ and ethanolamine¹¹ (A) (1:4) in 2-propanol in the presence of 6 equiv. (versus Ru) of 2-PrOK at 50°C for 25 h gave diol 2a in high chemoselectivity but poor conversion (entry 1). ¹H and ¹³C NMR analysis of 2a and GLC analysis of the

Scheme 1.

Keywords: asymmetric transfer hydrogenation; syn-diols; chiral Ru catalysts.

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)00310-6

^{*} Corresponding author. Tel.: +33 (0)223 235 950; fax: +33 (0)223 236 939; e-mail: jean-francois.carpentier@univ-rennes1.fr

Table 1. Ruthenium-catalyzed asymmetric transfer hydrogenation of aldols 1a,b in 2-propanol^a

Entry	Aldol 1a–c	Precursor Ru arene	Ligand	Temp. (°C)	Time (min)	Conv. 1 (mol%)	Sel. 2 (mol%)	de 2 (%)
1	(S)-1a	<i>p</i> -Cymene	А	50	1500	29	>98	12 syn
2	(S)-1a	Benzene	(1 <i>R</i> ,2 <i>S</i>)- B	50	20	99	97	25 anti
3	(S)-1a	Benzene	(1 <i>S</i> ,2 <i>R</i>)- B	50	10	75	>98	66 syn
					60	100	78	46 syn
4	(S)-1a	Benzene	(1 <i>S</i> ,2 <i>R</i>)- B	20	1140	85	>98	70 syn
					1560	98	>98	66 syn
5	(S)- 1a	p-Cymene	(1 <i>R</i> ,2 <i>S</i>)- B	50	60	87	>98	44 anti
6	(S)-1a	<i>p</i> -Cymene	(1 <i>S</i> ,2 <i>R</i>)- B	50	60	96	97	71 <i>syn</i>
7	(S)-1a	<i>p</i> -Cymene	(1S, 2R)-B	20	1860	79	>98	79 syn
					3660	100	91	73 syn
8	(S)-1a	<i>p</i> -Cymene	(1S, 2R)- B	80	15	90	>98	74 syn
					20	99	95	60 syn
9	(S)-1a	Anisole	(1S, 2R)- B	50	80	78	>98	72 syn
10	(S)-1a	tBu-benzene	(1S, 2R)- B	50	2880	48	>98	39 anti
11	(S)-1a	Benzene	(1S, 2R)-C	50	60	67	>98	70 syn
					90	95	94	65 syn
12	(S)-1a	<i>p</i> -Cymene	(1S, 2R)-C	50	60	29	>98	80 syn
					1320	47	>98	70 syn
13 ^b	(S)-1a	(1 <i>S</i> ,2 <i>R</i>)-Ru E		20	90	86	>98	75 syn
					450	98	97	72 syn
14	(S)-1a	p-Cymene	(1S, 2S)-D	50	90	78	>98	14 anti
					1380	98	86	10 anti
15	(S)-1a	p-Cymene	(1R, 2R)-D	50	240	>99	89	15 syn
				30	120	50	>98	72 syn
16	(R)-1b	<i>p</i> -Cymene	(1 <i>S</i> ,2 <i>R</i>)- B		1440	>98	86	68 syn

^a The reaction was carried out using 2.0 mmol of **1** and 0.02 mmol of Ru in a 0.1 M 2-propanol solution. See footnote † for a typical procedure. ^b Reaction carried out with isolated catalyst; see Ref. 11.

corresponding acetonide¹⁰ showed a low de in favour of the syn diastereomer. This indicates a limited induction of the chiral centre present in the substrate. When the same reaction was performed with catalytic combinations based on ephedrine derivatives (B, C), a significant increase in the reduction rate was observed. Completion was usually reached within 1 h at 50°C in the presence of 1 mol% of Ru. Consistent with the above results, reversing the configuration of the chiral ligand resulted in opposite diastereoselectivity for the diols. syn-Diol 2a is formed from (+)-(1S,2R)-ephedrine type ligands which give the 'match-pair', considering that the de values with these ligands are systematically higher than those observed from systems based on (-)-(1R,2S)-ephedrine type ligands (compare entries 2/3) and 5/6). Previous work in the field of ruthenium-catalyzed asymmetric transfer hydrogenation of ketones has highlighted the importance of both the chiral ligand and arene ligand on the enantioselectivity and activity of the reaction.⁸⁻¹¹ This also proved to be the case in the present application. With respect to the influence of the arene ligand, the Ru-benzene precursor gave, under the same reaction conditions, more active but less stereoselective catalysts than those based on the commonly used Ru–(*p*-cymene) precursor (entries 2/5, 3/6, 4/7, 11/12); reduced steric hindrance at the catalytically active metal center for the Ru-benzene system most likely accounts for this very general trend. Using the same arguments, one may reasonably rationalize: (i) the similar performance of the Ru-anisole and Ru-(pcymene) systems (entries 6/9), and (ii) the extreme

sluggishness of the Ru-(tbutyl-benzene) and the marked reverse in the diastereoselectivity of the reaction¹⁰ from syn to anti with this system compared to the other Ru-arene catalysts investigated (entry 10). The latter experiment clearly confirms a catalyst-control of the stereoselectivity of the reduction. Regarding the chiral ligand, systems based on Novori's TsDPEN $(\mathbf{D})^8$ proved surprisingly inefficient in terms of stereoselectivity, no matter what the ligand configuration (entries 14 and 15). N-4-(Biphenyl)methyl-norephedrine (C), that we specifically developed for the asymmetric transfer hydrogenation of functionalized ketones such as β -keto esters,¹⁰ did not bring in this case a significant enhancement of the diastereoselectivity compared to systems based on simple ephedrine (B), but led logically to decreased reaction rates (entries 3/11, 6/12). All in all, the best compromise between stereoselectivity and activity for the reduction of 1a was obtained in the presence of the $[RuCl_2(\eta^6-p-cymene)]_2/B$ (1:4) combination. With this system, a moderate erosion of the de values from 79 to 74% but a large increase in the catalyst turnover frequency from 2.5 to 360 h^{-1} was noticed upon increasing the reaction temperature from 20 to 80°C (entries 6-8). However, results of Table 1 clearly show that overexposure of the products under the reaction conditions causes a rapid decrease in chemoselectivity (mainly due to transesterification reactions) but also of the de values; on the other hand, only limited erosion of the ee ($\leq 2\%$) was observed. A possible reason for this phenomenon may arise from the use of a slight excess of base to generate the active species from the in situ combination.⁷ Recently, we have shown that side-reactions from 2-acylbenzoates could be overcome upon using the isolated active catalyst (1S,2R)-Ru E (Chart 1),¹⁰ that allows us to perform selectively the transfer reduction under neutral conditions.¹¹ The application of this technique to the reduction of **1a** showed, as expected, a better resistance toward transesterification reactions, but de values still decreased, possibly because of the reversibility of the reaction (entry

Chart 1.

[†] In a typical experiment (entry 16), a solution of $[RuCl_2(\eta^6-p-$ (15,2R)-ephedrine (6.6 mg, 0.04 mmol) and (15,2R)-ephedrine (6.6 mg, 0.04 mmol) in dry freshly distilled 2-propanol (5 mL) was heated under nitrogen at 80°C for 20 min. After cooling the orange solution to room temperature, a solution of (R)-1b (615 mg, 2.0 mmol; 96% ee; prepared by aldolization of ethyl (R)-4-benzyloxy-3-hydroxybutyrate with AcOtBu-LDA) in dry freshly distilled 2-propanol (14 mL) and 2-PrOK (1.0 mL, 0.12 m in 2-propanol, 0.12 mmol) were added. The resulting solution was placed in an oil bath at 30°C, stirred with a magnetic bar and the reaction was monitored by GLC analysis using a BPX5 capillary column. After evaporation of volatiles under vacuum the crude product was purified by column chromatography (silica, Et₂O-heptane) to provide 2b as a pale yellow oil (370 mg, 61%). Full assignment of NMR resonances was made on the basis of ¹H, ¹H COSY and ¹³C, ¹H HETCOR experiments; syn-(3S,5R)-2b: ¹H NMR (CDCl₃, 300 MHz): δ 7.31 (m, 5H, aro), 4.56 (s, 2H, PhCH₂), 4.34 (m, 1H, CH₂CHOHCH₂), 4.13 (m, 1H, OCH₂CHOH), 3.50 and 3.46 (2m, 2×1H, PhCH₂OCH₂), 2.45 and 2.37 (2m, 2×1H, J=6.3 Hz, CH₂CO₂), 2.01 and 1.50 (2m, 2×1H, CHOHCH₂CHOH), 1.44 (s, 9H, tBu); ¹³C NMR (CDCl₃, 75 MHz): δ 169.46 (CO₂), 137.82, 127.89, 127.10 (aro), 80.03 (CMe₃), 73.08 (OCH₂CH), 72.87 (PhCH₂), 69.89 (0CH₂CH), 67.64 (CHOHCH₂CO₂), 42.99 (CH₂CO₂), 34.65 (OCH₂CH), 27.60 (CMe₃). anti-(3R,5R)-2b ¹H NMR: δ 7.33 (m, 5H), 4.56 (s, 2H), 4.27 (m, 1H), 4.12 (m, 1H), 3.49 (m, 2H), 2.43 (m, 2H), 1.60 (m, 2H), 1.46 (s, 9H); ¹³C NMR: δ 171.98, 137.88, 128.27, 127.58, 81.01, 74.23, 73.20, 67.36, 65.26, 42.46, 38.77, 27.81. A small portion of the oily mixture containing diastereomers of 2b (ca. 20 mg) was refluxed for 2 h in 2,2-dimethoxypropane (5 mL) in the presence of para-toluenesulfonic acid (2 mg); the corresponding acetonides1 were analyzed by GLC on a BPX5 column (25 m×0.32 mm; 200°C, 0.2 bar N₂); the retention times for the syn- and antiacetonides are $t_{\rm R} = 11.38$ and $t_{\rm R} = 10.32$ min, respectively.

13).⁸ The reduction of *tert*-butyl (*R*)-6-benzyloxy-5hydroxy-3-oxohexanoate (**1b**), an adequately substituted molecule for further functionalization,¹ proceeded in similar de for the *syn*-diol but was much faster and also more sensitive in terms of chemoselectivity.[†] No reaction was observed with *tert*-butyl (*R*)-6-chloro-5hydroxy-3-oxohexanoate (**1c**), most likely because of catalyst poisoning by the chloro group as already observed with other chloro-containing substrates.¹⁰

In conclusion, transfer hydrogenation provides a promising catalytic alternative to traditional borane reagents for the *syn* diastereoselective reduction of chiral 5-hydroxy-3-ketoesters. Current investigations in this field are aimed at improving diastereoselectivities. New stereoselective catalytic routes toward functionalized-3,5-dihydroxyesters will be reported in due course.

Acknowledgements

We thank PPG-SIPSY for a Ph.D. grant to K.E. and Dr. M. Bulliard for stimulating discussions.

References

- Beck, G.; Jendrella, H.; Kesseler, K. Synthesis 1995, 11, 1014–1018.
- Endo, A.; Kuroda, M.; Tsujita, Y. J. Antibiot. 1976, 29, 1346–1348.
- Alberts, A. O.; Chen, J.; Kuron, G.; Hunt, V.; Hoffman, C.; Rothrock, J.; Lopez, M.; Joshua, H.; Harris, E.; Patchett, A.; Monaghan, R.; Currie, S.; Stapley, E.; Albers-Schonberg, G.; Hensens, O.; Hirshfild, J.; Hoogsteen, K.; Liesch, J.; Springer, J. *Proc. Natl. Acad. Sci.* USA 1980, 77, 3957–3961.
- Chen, K. M.; Hardtmann, G. E.; Prasad, K.; Repic, O.; Shapiro, M. J. *Tetrahedron Lett.* **1987**, *28*, 155–158.
- Shao, L.; Kawano, H.; Saburi, M.; Uchida, Y. Tetrahedron 1993, 49, 1997–2010.
- Blandin, V.; Carpentier, J.-F.; Mortreux, A. Eur. J. Org. Chem. 1999, 11, 3421–3427.
- 7. For a review, see: Palmer, M. J.; Wills, M. Tetrahedron: Asymmetry 1999, 10, 2045–2061.
- Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97–102.
- Takehara, J.; Hashiguchi, S.; Fujii, A.; Shin-ichi, I.; Ikariya, T.; Noyori, R. Chem. Commun. 1996, 11, 233– 234.
- Everaere, K.; Mortreux, A.; Bulliard, M.; Brussee, J.; van der Gen, A.; Nowogrocki, G.; Carpentier, J.-F. *Eur. J. Org. Chem.* 2001, *11*, 275–291.
- Everaere, K.; Scheffler, J.-L.; Mortreux, A.; Carpentier, J.-F. *Tetrahedron Lett.* 2001, 42, 1899–1901.